Peran Cyanobacteria terhadap Oksigenasi Bumi dan Evolusi Kloroplas
DOI:
https://doi.org/10.62951/flora.v2i1.212Keywords:
Cyanobacteria, Evolution, Endosymbiosis, ChloroplastsAbstract
Cyanobacteria play an important role in the evolution of the earth and biosphere. Cyanobacteria play a role in the oxygenation of the atmosphere and oceans that began since the great oxidation event. These living things are the main producers in the ocean in the past and present and are the ancestors of Chloroplasts. The morphology commonly used is still difficult to read for microfossil interpretation which makes the identification of cyanobacteria in the early fossil record still ambiguous. This study was conducted to review classical and new cyanobacterial biosignatures. In addition, this study will also analyze the fossil record of cyanobacteria mentioned earlier and the challenges of molecular approaches to modern cyanobacteria. The suggestions we provide are new calibration points for molecular clocks and strategies to increase insight into the timing and patterns of cyanobacteria evolution and oxygenic photosynthesis.
References
Allaf, M. M., & Peerhossaini, H. (2022). Cyanobacteria: Model microorganisms and beyond. Microorganisms, 10(696), 1–23. https://doi.org/10.3390/microorganisms10050696
Archibald, J. M. (2015). Endosymbiosis and eukaryotic cell evolution. Current Biology, 25, R911–R921. https://doi.org/10.1016/j.cub.2015.08.041
Brand, U., Davis, A. M., Shaver, K. K., Blamey, N. J. F., Heizler, M., & Lecuyer, C. (2021). Atmospheric oxygen of the Paleozoic. Earth-Science Reviews, 216, 1–13. https://doi.org/10.1016/j.earscirev.2021.103579
Cournoyer, J., Altman, S., Gao, Y., Wallace, C., Zhang, D., Lo, G., Haskin, N., & Mehta, A. (2022). Engineering artificial photosynthetic life-forms through endosymbiosis. Nature Communications, 7. https://doi.org/10.1038/s41586-022-04585-w
Demoulin, C. F., Lara, Y. J., Cornet, L., François, C., Baurain, D., Wilmotte, A., & Javaux, E. J. (2019). Cyanobacteria evolution: Insight from the fossil record. Free Radical Biology and Medicine, 140, 206–223. https://doi.org/10.1016/j.freeradbiomed.2019.04.024
Kump, L. R. (2008). The rise of atmospheric oxygen. Nature, 451, 277–278. https://doi.org/10.1038/nature06572
Kutschera, U. (2018). Symbiogenesis and cell evolution: An anti-Darwinian research agenda. In The Darwinian tradition in context (pp. 319–324). Springer. https://doi.org/10.1007/978-3-319-60993-9_33
Masithah, E. D. (2021). Cyanophyceae. Surabaya: Airlangga University Press.
Okazaki, K., Kabeya, Y., & Miyagishima, S. (2010). The evolution of the regulatory mechanism of chloroplast division. Plant Signaling & Behavior, 5(2), 164–167. https://doi.org/10.4161/psb.5.2.10401
Sánchez-Baracaldo, P., Bianchini, G., Wilson, J. D., & Knoll, A. H. (2022). Cyanobacteria and biogeochemical cycles through Earth history. Trends in Microbiology, 30(2), 143–157. https://doi.org/10.1016/j.tim.2021.10.002
Schirrmeister, B., Gugger, M., & Donoghue, P. (2015). Cyanobacteria and the Great Oxidation Event: Evidence from genes and fossils. Journal of Palaeontology, 58(5), 772–785. https://doi.org/10.1017/jpa.2015.21
Shestakov, S. V., & Karbysheva, E. A. (2017). The origin and evolution of cyanobacteria. Biology Bulletin Reviews, 7, 259–272. https://doi.org/10.1134/S2079086417030036
Zahra, Z., Choo, D. H., Lee, H., & Parveen, A. (2020). Cyanobacteria: Review of current potentials and applications. Environments, 7(13), 1–17. https://doi.org/10.3390/environments7010013
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Flora : Jurnal Kajian Ilmu Pertanian dan Perkebunan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.